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The Validity of Nonlinear Langevin Equations 
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In the presence of internal noise the variables describing a system are intrinsi- 
cally stochastic. If they constitute a Markov process the f2 expansion enables 
one to extract a deterministic macroscopic equation and to compute the fluctua- 
tions in successive approximations. In the lowest or linear noise approximation 
the fluctuations can be represented by a Langevin equation, provided it is 
handled appropriately. Higher orders cannot be described by any white noise 
Langevin equation. The question whether the equation has to be interpreted 
according to It6 or Stratonovich concerns these higher orders, for which the 
equation is not valid anyway. 
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1. FORMULATION OF THE PROBLEM 

Consider a physical system whose macroscopic state is determined by a 
variable x which obeys an ,equation of motion 

S, = f ( x )  (1) 

In principle x could stand for a set of variables, but for simplicity we 
confine ourselves to the case of a single one. In order to take fluctuations 
into account one often employs the "Langevin approach." This consists in 
adding a fluctuating term to the macroscopic equation: 

Jc = f ( x )  + g ( x ) w ( t )  (2) 

and postulating certain stochastic properties of the random function w. It 
should be emphasized that this postulate is an essential ingredient of the 
Langevin approach; without it the equation is merely a definition of w and 
contains no information from which the fluctuations in x can be calculated. 
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One usually postulates w to be Gaussian white noise, normalized by 

(w(t)> = 0, (w( t l )w( t2)  > = 8(t  I - t2) (3) 

The choice of g(x)  is based on physical considerations regarding the nature 
of the noise source. 

This way of taking fluctuations into account is beset with difficulties. 
One of them is that  if g depends on x the last term has no well-defined 
meaning unless one supplies an ad hoc interpretation rule. Yet it may be 
stated that this approach leads to correct results in the following three 
cases. 

(a) When the noise is due to an external source coupled to the original 
system (1). This means that g is proportional to a physical coupling 
parameter and can be switched off. In this case, however, w(t) is never 
exactly white, so that (2) does have a well-defined meaning as a stochastic 
differential equation. In principle this equation can be solved and after- 
wards one may take the limit of vanishing autocorrelation time of w. 
Practically all engineering problems belong to this class, including the 
passage of a noisy signal through a nonlinear device. This case presents no 
conceptual difficulties and is not the subject of this article. 

(b) Internal noise cannot be switched off but is an inherent feature of 
the same physical mechanism that causes the evolution (1). Examples are 
Brownian motion, Ohmic resistance, chemical rate equations. Yet the 
Langevin approach can be used in linear approximation around a stationary 
solution x ~ of (1). This means that [x - x~l must be small enough to set 

f ( x )  = (x - x~) f ' (x~) ,  g ( x )  = g ( x  ~) (4) 

No interpretation dilemma arises as g is taken constant. If the stationary 
state happens to be the thermodynamic equilibrium the value of this 
constant can be found from the fluctuation-dissipation theorem. 

This case also comprises those systems in which the nonlinear terms 
are of mechanical or kinematic origin, provided that the dissipative pro- 
cesses in them, which cause the fluctuations, may be regarded as linear. An 
example is hydrodynamics with linear viscosity and heat conduction. 

(c) Internal noise around a nonstationary solution x = q~(t) of (1) can 
also be described by (2) in the "linear noise approximation." In this 
approximation the fluctuations are supposed to be so small that for the 
purpose of computing them one may set 

f ( x )  = f(q0(t)) + {x - q~(t)}f'(ep(t)), g ( x )  = g (~ ( t ) )  (5) 

Thus, for computing the solution q0(t) the original nonlinear equation (1) is 
used, but for the fluctuations f is locally linearized. 

Class (b) is a subclass of (c )s ince  (4) is obtained from (5) by 
substituting the particular solution q0(t) = x *. Our task is therefore to show 
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that (5) is correct. More precisely, it constitutes the lowest order in a 
well-defined systematic approximation scheme. At the same time we shall 
find expressions for f and g. Moreover we shall show in Section 3 that 
higher orders cannot be represented by any Langevin equation (2) with (3). 
Thus the physical contents of the Langevin equation is exhausted by its 
approximate solution (5). 

In this limited sense one may use the nonlinear Langevin equation (2), 
and in fact in many applications it is used in precisely this sense. However, 
there is a tendency to take the equation (2) more seriously and to think that 
all information contained in it, even beyond the approximation (5), has 
physical content. Of course, one then has to face the fact that (2) as it 
stands has no meaning and requires an additional interpretation rule. Our 
interpretation rule (5), which takes into account that (2) itself is only an 
approximation, is of course not satisfactory for mathematicians. Hence 
they developed the It6 and Stratonovich rules. 0'2) There is no point in 
arguing which one is correct, because both are mathematically consistent 
and both extend the meaning of (2) beyond its physical validity. 

In our case of internal noise the variable x is basically a stochastic 
process and should be treated as such, rather than as a macroscopic 
quantity to which fluctuations are added. A fundamental assumption, both 
of the Langevin approach and of the present one, is that x (or the set of 
variables x) is so chosen as to be Markovian (with sufficient approxima- 
tion). That implies that its transition probability density P(x, t Ix0, to) (from 
x0 at t o to x at t > to) obeys for fixed x 0, t o a master equation 

P = W P  (6) 

where ~ is a linear operator acting on the x dependence of P. The kernel 
of this operator has the form 

W ( x  Ix') = W(x Ix') - 8(x - x') f W(x" Ix)dx " 

where W(x Ix')/> 0 is the transition probability per unit time and represents 
the information concerning the physical structure of the system. When x 
only takes discrete values the integrations are replaced with summations. 
Equation (6) will be our starting point. 

The master equation (6) describes the evolution of P as a semigroup. It 
has to be solved for t > t o with initial condition 

e ( x ,  to I Xo, to) = 8(x  - x0) (7) 

for every possible x 0. Then the Markov process x(t) is completely known, 
including its macroscopic behavior and the fluctuations around it. In particu- 
lar it will be possible to test the assumptions and results of the Langevin 
approach. This strategy has been used earlier by Akcasu, and in fact our 
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main results are implicit in his paper. (3) Unfortunately his work has not 
received the attention it deserves. 

In most cases the master equation cannot be solved exactly, specifi- 
cally in those cases that correspond with a nonlinear macroscopic equation. 
It is therefore necessary to utilize the expansion in a parameter f~, which 
often represents the size of the system. The largest terms yield the macro- 
scopic equation and the next terms the fluctuations in lowest approxima- 
tion, which is called the "linear noise approximation." Whenever we shall 
talk of orders of approximation we are referring to this expansion in ~2-1. For 
the higher terms to be actually small it is necessary that f] be large. For 
them to remain small in the course of time the macroscopic solution q~(t) 
must be asymptotically stable. This we assume throughout; if it is not so 
the expansion takes an entirely different form. 

The fl expansion is not just a mathematical device for obtaining 
approximate solutions of the master equation. It is also the only consistent 
way of extracting a macroscopic, nonfluctuating equation (1) from the sto- 
chastic process described by (6). Even if one could solve the master 
equation exactly one would still not know how to decompose the P(x, t  [Xo, 
to) obtained into a macroscopic part, obeying a deterministic equation (1), 
and a fluctuating part. Many authors tacitly identify the macroscopic value 
of x with its average (x ) ,  but this average does not, in general, obey a 
deterministic equation of motion. This is only so if all equations are linear, 
as in case (b)--which explains why the theory of linear noise is impervious 
to the conceptual difficulties that have plagued the literature on noise in 
nonlinear systems. 

The Langevin approach, on the other hand, is the embodiment of the 
idea that the deterministic equation (1) is given first, and that fluctuation 
can be added afterwards, as in (2). This is true for external noise, but  not 
for internal noise. In the case of internal noise x(t) is basically a stochastic 
process given by (6), and its decomposition into a macroscopic aspect and 
fluctuations is man made. The f] expansion is needed to carry out this 
decomposition in a consistent manner. 

2. JUSTIFICATION OF EQ. (5) 

We first summarize the results of the fl expansion as far as the linear 
noise approximation. For simplicity we do not write the parameter f~, but 
the reader can verify from the literature (4) that our equations represent the 
first two terms in the expansion. Afterwards we verify that the same result 
is reproduced by (5). 

The information contained in the transition probabilities W(x I xr) may 
be expressed alternatively in the jump moments a~(x), defined for p = 0, 1, 
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2 . . . .  by 

= f ( x '  - x) W(x' I x) a x '  (8) au(x) 

The integral extends over the range of possible values of x. The macro- 
scopic equation (1) is 

5c = a](x) (9) 

[This statement has to be qualified. In general the jump moments (8) 
are power series in ~2 -1. The equation (9) therefore contains terms of 
relative order ~2-l, which do not belong to the truly macroscopic descrip- 
tion. Hence equation (1) should be identified with the leading term of (9) 
alone. For our present considerations, however, this complication is irrele- 
vant and we therefore assume that no such higher-order terms are present.] 

Let x = ~o(t) be a solution of (9) with initial value x 0, 

(p(t) = al(rp(t)), cP(to) = x o (10) 

The actual x( t )  is not equal to this, but is a stochastic variable and may be 
written 

x = ep(t) + ~ (11) 

Here ~ is a new stochastic variable, differing from x by the nonstochastic 
shift ~(t). Its average obeys 

Ot(~ ) = a~(cp( t))(~) (12) 

where the prime indicates the derivative. Since the initial value x 0 is taken 
as initial value of ~p(t) it is clear that (~) vanishes at t = t o and hence at all 
later times. Thus, in this approximation the macroscopic value ~(t) is 
identical with the average ( x ( t ) ) .  

The second moment of ~--which is also the variance of x---obeys 

8t(~ 2) = 2a~(cp(t))(~ 2) + a2(cp(t)) (13) 

According to (7) its initial value at t o equals zero. This determines the 
variance of the fluctuations around the macroscopic solution cp(t). Finally, 
the linear noise approximation has the consequence that the fluctuations 
are Gaussian, so that they are fully determined by their average and 
variance. 

Equations (10), (12), (13) are the results of the ~2 expansion. We now 
try to construct an equation of Langevin type that reproduces them. First it 
is clear that the fluctuations are correctly given by 

= a'l(ep(t))~ + [ a2(~p(t))]l/2w(t) (14) 

with Gaussian white w(t)  normalized as in (3). This is a linear Langevin 
equation and can be solved without difficulty, even though the coefficients 
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are functions of t. The explicit solution is not needed, however, for showing 
that (14) is equivalent with the results summarized above. It suffices to 
note, firstly, that (14) leads to a Gaussian ~(t) as it should; secondly, that 
(~) does indeed obey (12); and, thirdly, that (~2) obeys (13). The third 
point is verified by the familiar computation of Uhlenbeck and Ornstein. (5) 
One obtains from (14) 

( (A ' )2 )=( (a~ 'A t+(a2) l /2 foA tW( t ' )d t ' }2 )  

= a2At + ~(At) 2 

so that 

A(~ 2) = 2(~A~) + ((A~) 2) = (2a~  2 + a2)At 

in agreement with (13). Thus, for a given macroscopic solution ~(t) the 
Langevin equation (14) is an entirely adequate description of the fluctua- 
tions in linear noise approximation. 

The problem, however, is to find an equation (2) for x itself, which is 
not confined to one particular macroscopic solution cp. It should hold for 
all Xo, to and imply the macroscopic equation (9) as well. This is actually 
achieved by setting 

2 = al(x ) + [a2(x)]l/2w(t) (15) 

provided it is interpreted in the way indicated by (5). That is, this equation 
has to be handled as follows. First neglect the fluctuating term in (15) so as 
to obtain the macroscopic equation (9). Solve this equation with the 
required initial value to obtain ~(t). Substitute this macroscopic solution 
for the x in a 2 and linearize a I around it: 

~c = a,(cp) + (x - ~)a',(~p) + [a2(ep) ]'/2w(t) (16) 

This is the same equation as (14). The conclusion is that equation (15) does 
give the same results that follow from the master equation in linear noise 
approximation, provided it is interpreted in the way specified above. To this 
extent (15) is correct. 

3. LIMITATION OF THE LANGEVIN EQUATION 

It will now be shown that when the approximation is carried to the 
next order it is no longer possible to reproduce the result by a Langevin 
equation. To make the consistency of the argument clear it is now neces- 
sary to display the powers of f~ explicitly. On the other hand, to avoid 
lengthy equations we take the special case (b) of fluctuations in equilib- 
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rium. Clearly if these do not obey a Langevin equation there is no such 
equation for the general case either. 

Let x be measured on the scale of the elementary jumps, which is 
independent of 0. If one is dealing with a homogeneous system of size f~, 
such as a well-stirred chemical reaction, the number of jumps is propor- 
tional to 0, but their frequency per unit volume depends on the intensive 
variable x /~ .  Hence 

a , (x)  = Oa~(x/O) 

where a, is a function that no longer contains ~ as implicit parameter. 
(Actually this is not the most general case, but we shall adopt it for 
simplicity; it is not hard to generalize it so as to encompass all master 
equations to which the f~ expansion applies.) 

The ansatz 01 )  now takes the form 

x = + 

The macroscopic equation (10) is 

=  0(t0) = Xo/a 
To find the probability distribution I-i(~, t) of the fluctuations around the 
macroscopic value f~q0(t) one expands the master equation in powers of 
f~-~/2. The result is 

at a~ 

1 ~ a  2 ~f~l -ic~,~2 } + { + a -  + n 

3! a~ 3 {a3 + 0 -  ~ 3 ~  

+ ~ ~ 0/4I" [ .jr" ~(~--3/2) (17) 

The coefficients are the a,(qo) and their derivatives; they depend on time 
througl ! ~(t). If one omits the terms with f~-1/2 and higher, (17) reduces to 
a linear Fokker-Planck equation, from which the equations (12) and (13) in 
the previous section were obtained. 

For our present purpose we include the terms with f~- 1/2 and r -  ~. On 
the other hand, it suffices to take the special case q0 = co ~, so that the 
coefficients are constants. Then the first two lines constitute a nonlinear 
Fokker-Planck equation. The essential point, however, is that in the same 
order higher derivatives appear. This cannot be reproduced by a Langevin 
equation. For, any equation of type (2), regardless whether it is interpreted 
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by It6 or Stratonovich, is equivalent with a Fokker-Planck equation 
(without derivatives higher than the second). 

To complete the argument we show explicitly that any equation (2) is 
incompatible with (17). For a Markov process with master equation (6) the 
change of x during a short time At has the moments 

((Ax)~)x = / ( x ' -  x)~P(x',t + Atlx, t)dx' 

= A t f ( x '  - x y W ( x '  I x)dx' + ,~(At) 

Now equation (2) is equivalent with a Fokker-Planck equation 

~P(x't[x~176 ~ 1 bx ----50 2 ] 
= - o x  r ( x ) +  z g(x)2 P 

where F = f for It6 and F = f+ �89 for Stratonovich. (2) In either case, 
one finds for 1, = 1,2, . . .  

a((Ax) ~) 
Ot - f ( x ' - x ) ~ [  0 F ( x , ) +  1 0 2 ] 

- W 2 ~x ,---i g(x')Z P ( x " t l x ' t ) d x '  

1 - 1)(x' - x)"-Zg(x') 2] 

•  x)dx' 
This expression vanishes for v >/3. Of course this is just the condition that 
Kolmogorov postulated in order to derive the Fokker-Planck equation, (6) 
but we needed to know that it is also a necessary condition. 

On the other hand, one finds in the same way from (17) 

<(Ax) 3> = f~3/2 <(A03>~ = a~3 + 0~/2~,~. ~3~ 
At a t  

( ( A x ) 4 ~  -- a 2 ( ( A x ) 4 ) ~  -- a0g 4 

a t  a t  

The last line does not vanish, unless a 4 = 0, that is, unless 

f (x' - x)4W(x' l x)ax' = 0 

which is true only if the original W in (6) is itself a second-order differential 
operator /t la Fokker and Planck. The conclusion is that no Langevin 
equation (2) is valid beyond the lowest order in the fluctuations, i.e., the 
linear noise approximation--and to this order it is equivalent to (5), or 
more explicitly to (13). The It6-Stratonovich dilemma is moot, because it 
refers to higher terms, for which (2) is not valid anyway. 
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4. ALTERNATIVE VERIFICATION OF (16) 

In this section we shall employ a reverse approach as an alternative to 
the method of Section 2. The strategy is to take a master equation, write the 
corresponding equation (14) with a yet unspecified function v(t) instead of 
w(t), and derive the stochastic properties of v(t). Our technique is based on 
the "curtailed generating functional," which has recently been introduced 
in a similar context. r The result will be that in linear noise approximation 
v(t) is Gaussian white noise, thus confirming (14) and (16). 

We carry out this scheme for the special example of the radioactive 
decay. The master equation for the probability distribution of the number n 
of active nuclei is 

P(n,t) = (n + 1)P(n + 1 , t ) -  nP(n,t) 

As initial distribution at t = 0 take P(n,O)= 3n. no. The first two jump 
moments are 

al(n ) ---- -- n, a2(n ) = n 

Hence the corresponding equation (15) is 

h = - n  + nl/2v(t) (18) 

where w is replaced by v to emphasize that we do not anticipate the 
stochastic properties of this function. 

There is still one snag. If v(t) should turn out to be singular, (18) as it 
stands might have no meaning. Since we do not presume on the nature of 
v(t), the only possible manner to assign a meaning to (18) is to declare it 
equivalent to 

h _ n 1/2+ v(t) (19) 
nl/2 

We therefore have to find the stochastic properties of 

d et/2nl/2 v ( t )  = 2e  - ' / 2  

Thus we have to find the generating functional of v, involving an 
arbitrary test function l(t), 

Gv[l]=<exp[ifo~176 

= exp[ -2il(O)(no)l/2] <exp{ - 2 i  fo~[n(t  ) ]l/2et/2 de- t /2 l ( t )d t  ) > 
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The second factor is the characteristic function of n 1/2: 

Gv[ l] = exp[-2il(O)(no)l/2]Gnv2[ k] (20) 

d e-f/Zl(t) k(t) = - 2 e  '/2 ~-~ 

To find the characteristic function of n 1/2 one defines the curtailed 
characteristic functional F(n, t)--depending not only on the function k(t) 
but also on two additional variables n, t---by 

r(n,t)=(exp(ifotk(t ')[n(t ')]l /2dt '} ' .(O.n ) 

It obeys the "masterly equation" 

F(n,t) = (n + l)F(n + 1 , t ) -  nF(n,t) + ik(t)[ n(t) ]i/Zr(n,t) (21) 

with initial value 
F(n, O) = 8.,.o (22) 

Once this equation has been solved one obtains the characteristic func- 
tional from the identity 

oo 

G.,/2[k] = lim Z F(n,Q (23) 
t ---> or n =  0 

As (21) cannot be solved exactly we again employ the f~ expansion, 
setting 

n = a r ( t )  + al/2~, r(n,t) = ~2-~/2~(~,t) 

- -  - ~ (arp + a l / 2 ( ) -  ~ (24) 

+ ik(t)~'/2~plP(1 + @ f~-l/2,/ep)~ " 

Terms of order f~-1/2 and higher have been omitted in agreement with the 
linear noise approximation. To cancel the terms of order ~T/2 take 

~(t) = epoe-', ~o = no/a 
and substitute 

~(~, t ) =  ~(~, t)exp { i~l/2fO k(t )[ ~(t  )]1/2 dt'} 

One then has to order f~o 

(25) 

(26) 
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According to (22), (24), and (25) the initial value is 

�9 o ) =  

Equation (26) can be solved by substituting for xI, an arbitrary 
Gaussian, say 

Y 
�9 (g;,t)--(21ret)l/2exp[ ( ~ 2  f l )2  ] (27) 

Substitution in (26) shows that (27) is a solution provided that a, fl, ~, as 
functions of t obey three equations, which can be solved to give 

a ( t )  = % e - t ( 1  - e -t)  

~(t) = - 1 i(epo)l/2e-,fotk(t,)(e c/2 - e-C/2)dt ' 

log y( t )  = - 1 fote-C/Zk(t,)dt,fot 'k(t, ,)(et, , /2 e-t,,/2)dt, 

Inserting all this into (23) one finds 

Gn~/2I k ] = exp[ i(no)l/2 fo~176 t')e-t'/2 dt' 

1 ~176 t' dt' t' ,, c'/2 - -4 fo ( ) fo k( t  )(e - e-C'/2)dt" 1 

Using (20) one finally obtains after some partial integrations 

< , I  -- ex<- ] 
This is precisely the generating functional of Gaussian white noise. 

Of course the same calculation can be done for other special examples. 
In fact, it can be carried out for the general Markov process described by 
(6) and then constitutes an alternative derivation of the result of Section 2, 
rather than just  a verification for a special case. In order to prove in this 
way the result of Section 3 one would have to go to order ~2-1. This is 
possible in principle, but the calculation is formidable. 

As we now know that v(t) in (18) is Gaussian white noise, it appears 
that our interpretation (19) is merely the Stratonovich rule. That may seem 
surprising since it implies that on averaging (18) one finds that (n> does not 
obey the macroscopic decay law, although that ought to be true for this 
linear process. In fact, (18) with Stratonovich rule is equivalent to the It6 
equation 

h = - n  + �88 +nl/2w(t)  (Itd) 
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Hence 

 t(n) = - ( n )  + �88 

This shows, however, that the error is of relative order f~-~ and therefore 
beyond the order to which the Langevin equation can claim validity. 
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